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Algorithm Theory, Winter Term 2016/17
Problem Set 4 - Sample Solution

Exercise 1: Amortization (using Accounting) (8 points)

Suppose we perform a sequence of n operations on an (unknown) data structure in which the
1-th operation costs ¢ if 7 is an exact power of 2, and 1 otherwise.

Use the accounting method to determine the amortized cost per operation.

Solution:

We impose an extra charge on inexpensive operations which we keep in the so called bank
account. Then we use this bank account to pay for more expensive operations. It is crucial
to show that there is always enough credit on the bank account when we need it to pay for an
expensive operation.

To get a picture of how costs are distributed lets take a look at the actual costs of operations.

Operation |
Actual Cost |

345 6 7 9 ... 15 16 17
1 4 1 1 1 1

1 2 8
1 2 8 1 16 1

Table 1: Operations and their actual costs

We claim that the amortized cost of each operation is 3. Obviously operation ¢ is expensive if
and only if ¢ is a power of 2 and the actual cost of every cheap operation is 1. We will store 2
additional units in the bank account for each cheap operation which imposes

actual cost + bank account change =1+ 2 =3

amortized cost for each cheap operation. Let i = 2/ for some j € N be an expensive operation.
Then we take 27 — 3 units from the bank account to pay for its execution which leads to

actual cost + bank account change =2/ — (27 —3) =2/ — (27 —3) =3

amortized cost.



It remains to show that the bank account always has sufficiently many credits to pay for any ex-
pensive operation. Let i = 27 be any expensive operation. The number of consecutive operations
that are not an exact power of 2 (i.e., cheap operations) and are performed immediately before
operation (27) is 2/ — 2971 — 1. Each of these operations adds 2 units to the bank account. So
before the execution of the expensive operation 27 there are at least 2 - (27 — 2971 — 1) = 27 — 2
units on the bank account (during those operations nothing is taken from the bank account).
Thus, there is enough credit on the account to pay the 2/ — 3 credits for operation ¢ = 27.



Exercise 2: Amortization (using Potential Function) (8 points)

We are given a data structure D, which supports the operations put and £1ush. The operation
put stores a data item in D and has a running time of 1. Further, if D contains £ > 0 items, the

operation £1lush deletes [k/2] of the k data items stored in D and its running time is equal to
k.

Prove that both operations have constant amortized running time by using the potential function
method.

Solution

Goal:

O(1) amortized time per operation.

Intuition:

Flushing every item costs at most 2. Hence, a potential function should be increased by at least
2 whenever we put an item. Therefore, we are guaranteed to have enough potential to do a
flush operation.

Definition of potential function:

A potential function is a function mapping a possible configuration of the data structure to a
non negative real number. It is important that the potential function can be computed from the
status of the data structure. In particular the information about previous operations that have
been performed is not necessary to determine its value.

Define ® = 2N, where N is the current number of elements in the data structure D.

Correctness of potential function:

The above potential function is never less than 0 since the number of elements in D can not be
negative.

Amortized cost for :-th operation:

For the analysis, fix an arbitrary sequence of operations. Then let /V;_; denote the number of
elements in D before the i-th operation and /V; the number of elements after the ¢-th operation
!, In the following a; and t; are amortized and actual costs, respectively, for operation 4. For the
1-th operation we consider the cases that it is a put or a £ 1ush operation separately:

' N; depends on the type of operation that is performed in step . Thus N; differs in the two considered cases



If the ¢-th operation is put, then:

N; =N;_1+ 1.
t; = 1 (the actual cost of operation put).
a; = tz + ©z — (I)i—l =1+ 2Ni—1 +2— 2Ni_1 =3€ O(l)

If the :-th operation is £1ush, then:

Ni = Ni1 — [Ni1/2].
t; = N;_; (the actual cost of operation £ 1ush) as given in the exercise.
a; = tl + (pz - (I)i—l - Ni—l + (2Ni—l - 2[N1_1/2—|) - 2Ni—l == Ni—l - Q[NZ—I/Q—I S 0 S (9(1)

Hence, the amortized costs for both operations put and f1ush are constant.

Exercise 3: Fibonacci Heaps (12 points)

Fibonacci heaps are only efficient in an amortized sense. The time to execute a single, individ-
ual operation can be large. Show that in the worst case, the delete-min and decrease-key
operations can require time (2(n) (for any heap size n).

Hint: Describe an execution in which there is a delete-min operation that requires linear time.
Also, describe an execution in which there is a decrease-key operation that requires linear time.

Solution

A costly delete-min:

First n elements are added to the heap, which causes them all to be roots in the root list. Deleting
the minimum causes a consolidate call, which combines the remaining n — 1 elements, which
need at least n — 2 merge operations, i.e., it costs {2(n) time.

A costly decrease-key operation: (more difficult)

We construct a degenerated tree. Assume we already have a tree 7}, in which the root r,, has two
children r,,_; and ¢,,, where c¢,, is unmarked and r,,_; is marked and has a single child r,_» that
is also marked and has a single child r,,_3 and so on, until we reach a (marked or unmarked) leaf
r1. In other words, 7, consists of a line of marked nodes, plus the root and one further unmarked
child of the root. We give the root r,, some key k.

We now add another 5 nodes to the heap and delete the minimum of them, causing a consolidate.
In more detail let us add a node r,, with key k,.; € (0, k,), one with key 0 and 3 with keys
k" € (kpy1,kn). When we delete the minimum, first both pairs of singletons are combined to
two trees of rank 1, which are combined again to one binomial tree of rank 2, with the node 1
as the root and we name its childless child ¢, (confer the picture for the current state).



Since also 7}, has rank 2 we now combine it with the new tree and 7,1 becomes the new root.
We now decrease the key of ¢, to 0 as well as the keys of the two unnamed nodes and delete the
minimum after each such operation, as to cause no further effect from consolidate. Decreasing
the key of c,, however, will now mark its parent r,, as it is not a root anymore. Thus the
remaining heap is of exactly the same shape as 7},, except that its depth did increase by one: a
Tn+1.

Can we create such trees? We sure can by starting with an empty heap, adding 5 nodes, deleting
one, resulting in a tree of the following form:

We cut off the lowest leaf and now have a 7. The rest follows via induction.
Obviously, a decrease-key operation on 7 will cause a cascade of €2(n) cuts if applied to a heap
consisting of such a 7,.



Exercise 4: Union-Find (12 points)

Assume that we are given a union-find data structure which is implemented as a disjoint-set
forest. In the lecture, we have seen that when using path compression and the union-by-rank
heuristics, the total running time of any m operations is © (m - a(m, n)) (where a(m,n) is the
inverse of the Ackermann function and n is the number of make—set operations).

We now consider any sequence of m union-find operations, where all the make-set and
union operations appear before any of the find-set operations. Let f be the number of
find-set operations. Show that the total running time of the f find-set operations is only
O(f + n) if both path compression and union-by-rank heuristics are used. What happens in the
same situation if we use only the path compression heuristic (without union-by-rank)?

Remark: In the union-by-rank heuristic, each tree of the disjoint-forest representation has a
rank which is computed as follows. When a tree of size 1 is created in a make—set operation,
its rank is 0. Further, whenever two trees 7} and 75 are merged in a union operation, the tree
of smaller rank is attached to the tree of larger rank. If 77 and 75 have different ranks, the rank
of the combined tree is equal to the larger of the two ranks of 7 and 75. Otherwise, if they both
have the same rank, the rank of the combined tree is the rank of the two trees plus 1.

Solution

Observation 1: Using path compression, once a node x appears on a find path, = will be either
a root or a child of a root at all times thereafter since all the union operations appear before
any of the find-set operation.

We use the accounting method to obtain a constant amortized cost of a find—-set operation
when amortizing over all n make—set operations. We charge a make—set operation two
dollars. One dollar pays for the make-set, and one dollar remains on the node z that is
created. The latter pays for the first time that x appears on a find path and is turned into a child
of a root. We charge the actual cost of a union operation as its amortized cost. Obviously, this
pays for the actual linking of one node to another. We charge one dollar for a find-set. This
dollar pays for visiting the root and its child, and for the path compression of these two nodes,
during the find-set. All other nodes on the find path use their stored dollar to pay for their
visitation and path compression. With respect to the Observation 1, after the find-set, all
nodes on the find path become children of a root (except for the root itself), and so whenever
they are visited during a subsequent find-set, the find-set operation itself will pay for
them. Since the credit in our bank account always remains positive, the total actual cost of all
operations is upper bounded by the total amortized cost of all operations. The total actual cost
of all union operations equals the total amortized cost of them. Hence, the total actual cost of
all make-set and find-set operations is at most 2n + f since the number of make-set
operations is . Consequently, the total actual cost of all find-set operations is O(n + f).

Observe that nothing in the above argument requires union by rank. Therefore, we get an
O(f + n) time bound regardless of whether we use union by rank.
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